# Stability of self-gravitating accretion disks in galactic centers Lumpy gravy

Markward Britsch

Supervisor: Wolfgang J. Duschl

Markward.Britsch@ita.uni-heidelberg.de

Zentrum für Astronomie Heidelberg, Institut für Theoretische Astrophysik Universität Heidelberg







### How to fix lumpy gravy

No matter how many times you make pan gravy, lumps have a way of appearing—usually when you least want them.

http://www.ehow.com/how\_114366\_fix-lumpy-gravy.html







#### How to fix lumpy gravy

No matter how many times you make pan gravy, lumps have a way of appearing—usually when you least want them.

http://www.ehow.com/how\_114366\_fix-lumpy-gravy.html

At least on larger galactic scales, it is believed that strong self-gravity leads to star formation. If the same is true of QSO discs, there is a danger that most of the gas would form stars, leaving little to fuel the QSO.

Goodman (2003)







#### How to fix lumpy gravy

No matter how many times you make pan gravy, lumps have a way of appearing—usually when you least want them.

Don't throw the gravy out. [...] You can still put Thanksgiving dinner on the table in time.

http://www.ehow.com/how\_114366\_fix-lumpy-gravy.html

At least on larger galactic scales, it is believed that strong self-gravity leads to star formation. If the same is true of QSO discs, there is a danger that most of the gas would form stars, leaving little to fuel the QSO.

Goodman (2003)







#### A SMBH formation model

merger of two galaxies → gas flows into the center











#### A SMBH formation model

- merger of two galaxies → gas flows into the center
- it forms an accretion disk that feeds the forming black hole











• such a disk is gravitational unstable if it is not hot







- such a disk is gravitational unstable if it is not hot
- simulate such a thin disk in polar coordinates















- such a disk is gravitational unstable if it is not hot
- simulate such a thin disk in polar coordinates
- $R_{\rm i} = 29 {
  m pc}, R_{\rm a} = 126 {
  m pc},$   $M_{\rm d} = 6 \cdot 10^8 M_{\odot} \gg M_* = 7.5 \cdot 10^7 M_{\odot}$
- some viscosity, dynamically not important since  $t_{\nu} \gg t_{\rm end} = 3.2 \cdot 10^6 {\rm a}$







- such a disk is gravitational unstable if it is not hot
- simulate such a thin disk in polar coordinates
- $R_{\rm i} = 29 {
  m pc}, R_{\rm a} = 126 {
  m pc},$   $M_{\rm d} = 6 \cdot 10^8 M_{\odot} \gg M_* = 7.5 \cdot 10^7 M_{\odot}$
- some viscosity, dynamically not important since  $t_{\nu} \gg t_{\rm end} = 3.2 \cdot 10^6 {\rm a}$
- use NIRVANA2.0 (Ziegler, 1998, 1999)







- such a disk is gravitational unstable if it is not hot
- simulate such a thin disk in polar coordinates
- $R_{\rm i} = 29 {
  m pc}, R_{\rm a} = 126 {
  m pc},$   $M_{\rm d} = 6 \cdot 10^8 M_{\odot} \gg M_* = 7.5 \cdot 10^7 M_{\odot}$
- some viscosity, dynamically not important since  $t_{\nu} \gg t_{\rm end} = 3.2 \cdot 10^6 {\rm a}$
- use NIRVANA2.0 (Ziegler, 1998, 1999)
- include cooling







- such a disk is gravitational unstable if it is not hot
- simulate such a thin disk in polar coordinates
- $R_{\rm i} = 29 {
  m pc}, R_{\rm a} = 126 {
  m pc},$   $M_{\rm d} = 6 \cdot 10^8 M_{\odot} \gg M_* = 7.5 \cdot 10^7 M_{\odot}$
- some viscosity, dynamically not important since  $t_{\nu} \gg t_{\rm end} = 3.2 \cdot 10^6 {\rm a}$
- use NIRVANA2.0 (Ziegler, 1998, 1999)
- include cooling
- no star formation







- such a disk is gravitational unstable if it is not hot
- simulate such a thin disk in polar coordinates
- $R_{\rm i} = 29 {
  m pc}, R_{\rm a} = 126 {
  m pc},$   $M_{\rm d} = 6 \cdot 10^8 M_{\odot} \gg M_* = 7.5 \cdot 10^7 M_{\odot}$
- some viscosity, dynamically not important since  $t_{\nu} \gg t_{\rm end} = 3.2 \cdot 10^6 {\rm a}$
- use NIRVANA2.0 (Ziegler, 1998, 1999)
- include cooling
- no star formation









#### **Accreted mass**









• more simulations done with different disk masses and values for the viscosity







- more simulations done with different disk masses and values for the viscosity
- high accretion due to clump-clump interactions  $t_{\rm acc} \propto \frac{1}{\Omega}$







- more simulations done with different disk masses and values for the viscosity
- high accretion due to clump-clump interactions  $t_{\rm acc} \propto \frac{1}{\Omega}$
- as predicted by the  $\beta$ -viscosity (Duschl, Strittmatter, Biermann, 2000 and Duschl, Britsch submitted to ApJL)







- more simulations done with different disk masses and values for the viscosity
- high accretion due to clump-clump interactions  $t_{\rm acc} \propto \frac{1}{\Omega}$
- as predicted by the  $\beta$ -viscosity (Duschl, Strittmatter, Biermann, 2000 and Duschl, Britsch submitted to ApJL)
- turbulent velocities and length-scales also match the  $\beta$ -viscosity







- more simulations done with different disk masses and values for the viscosity
- high accretion due to clump-clump interactions  $t_{\rm acc} \propto \frac{1}{\Omega}$
- as predicted by the  $\beta$ -viscosity (Duschl, Strittmatter, Biermann, 2000 and Duschl, Britsch submitted to ApJL)
- turbulent velocities and length-scales also match the  $\beta$ -viscosity
- $t_{\rm acc} \propto \frac{1}{\Omega}$  also predicted by a clumpy disk model by Kumar (1999)







#### Summary

- formation model of SMBHs including large thin self-gravitating disks
- interacting clumps give very high accretion rate
- can be interpreted as a  $\beta$ -viscosity
- exciting accretion process
- supports this SMBH formation model
- but there's still a lot to do ...







#### References

Goodman, J. MNRAS 339 (2003) 937-948

Duschl, W. J., Strittmatter, P. A., Biermann, P. L A&A

**357** (2000) 1123-1132

Duschl, W. J., Strittmatter, P. A.,

arXiv:astro-ph/0602009 (2006)

Barnes, J. E., Hernquist, L., ApJ 471 (1996) 115-142

Ziegler, U., Comp. Phys. Comm. 109 (1998) 111-134

Ziegler, U., Comp. Phys. Comm. 116 (1999) 65-77

Kumar, P., ApJ 519 (1999) 599-604





